New polynomial-time algorithms for Camion bases
نویسندگان
چکیده
Let M be a finite set of vectors in Rn of cardinality m and H(M) = {{x ∈ Rn : cTx = 0} : c ∈ M} the central hyperplane arrangement represented by M. An independent subset of M of cardinality n is called a Camion basis, if it determines a simplex region in the arrangementH(M). In this paper, we first present a new characterization of Camion bases, in the case whereM is the column set of the node-edge incidence matrix (without one row) of a given connected digraph. Then, a general characterization of Camion bases as well as a recognition procedure which runs in O(n2m) are given. Finally, an algorithm which finds a Camion basis is presented. For certain classes of matrices, including totally unimodular matrices, it is proven to run in polynomial time and faster than the algorithm due to Fonlupt and Raco. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
A Unified Approach for Design of Lp Polynomial Algorithms
By summarizing Khachiyan's algorithm and Karmarkar's algorithm forlinear program (LP) a unified methodology for the design of polynomial-time algorithms for LP is presented in this paper. A key concept is the so-called extended binary search (EBS) algorithm introduced by the author. It is used as a unified model to analyze the complexities of the existing modem LP algorithms and possibly, help ...
متن کاملNew Bases for Polynomial-Based Spaces
Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...
متن کاملGlobal optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملA New Class of Holographic Algorithms: Fibonacci Gates
We introduce Fibonacci gates as a polynomial time computable primitive, and develop a theory of holographic algorithms based on these gates. The Fibonacci gates play the role of matchgates in Valiant’s theory [16]. We develop a signature theory and characterize all realizable signatures for Fibonacci gates. For bases of arbitrary dimensions we prove a universal bases collapse theorem. We apply ...
متن کاملTenacity and some other Parameters of Interval Graphs can be computed in polynomial time
In general, computation of graph vulnerability parameters is NP-complete. In past, some algorithms were introduced to prove that computation of toughness, scattering number, integrity and weighted integrity parameters of interval graphs are polynomial. In this paper, two different vulnerability parameters of graphs, tenacity and rupture degree are defined. In general, computing the tenacity o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 306 شماره
صفحات -
تاریخ انتشار 2006